
Bernoulli’s Equation 
 
Bernoulli’s equation is simply the law of conservation of energy applied to an ideal fluid 
moving through a tube (discussed in volume flow rate). An ideal fluid in reality cannot exist 
because it is incompressible and experiences no internal friction which means it has no 
viscosity.  However, using the idea can give us a fairly accurate guess as to how the 
dynamics of regular fluids work but keep in mind that the equation applies only to ideal 
fluids. The equation also demonstrated a very important principle to assist in lift which is 
Bernoulli’s principle.  
 
To understand this, we will begin with a tube with an ideal fluid flowing through it. The tube 
starts narrow and low and ends wide and higher than its beginning as shown in the 
diagram. 
 

 
Fig 1.1 

 
The equation applies to all pipes but this example is given to show what changes may take 
place. When applying the law of conservation of energy to each change we find that the 
sum of the total energy must be conserved. This means that the initial pressure(p), kinetic 
energy( ½ρv12) and potential(ρgh) energy all need to add up to be equal to the sum of the 
final pressure, kinetic energy and potential energy. 
 
By doing this we get the equation; 
 

               p1 + ½ρv12  + ρgh1 =  p2 + ½ρv22  + ρgh2   (Bernoulli’s equation) 
 
This means that p + ½ρv2  + ρgh = constant  
 
The equation is not meant to demonstrate a principle but is more a reformulation of a 
principle. To see this we can apply it to a fluid at rest where v1 and v2 are equal to 0 
you will then be able to see that p2  =  p1 +  ρg(h1-h2) which demonstrates the pressure of 
fluids at rest. Another thing that the equation predicts when y is a constant (we can 
therefore set it = 0) is p1 + ½ρv12  =  p2 + ½ρv22 . This means that if the speed of a fluid 
particle increases the pressure of that fluid must decrease. So when looking at airflow 
diagrams the dense streamlines mean that that is an area of low pressure and high 
velocity because they are inversely proportional to each other. This makes sense if you 
think about the fact that when a fluid particle enters a narrow part of a tube, the high 
pressure from the back of the tube accelerates it giving it a higher velocity and a wide part 
of the tube in front of it will have a high pressure that decelerates it.  



 
One can see many examples of this in real life: When in a moving car if you open the 
window just enough where as not to disturb the airflow outside the car, if there is visible 
smoke in the car you will observe that it drifts towards the relatively moving stream of air 
outside the car. However there is a misconception about this which comes about when you 
put your hand outside the car into the air flow, because the air is moving you will feel it on 
your hand but this can be mistaken with being high pressure so don’t make that mistake; it 
is simply the relative speed felt when disturbing the airflow with your hand. 
 
 
Proof of Bernoulli’s Equation 
 

As shown in the previous diagram, we will take the entire volume of the ideal fluid to 
be our  system. Applying the law of conservation of energy to it will tell us that the total 
work done will be equal to the change in Kinetic energy. 

 
dK = ½ m(v22 – v12) 

 
If we take m to be the density times the change in volume of the fluid we get that: 
 

dK = ½ ρdV(v22 – v12) 
 
For the work done by weight which will be = -mgh (it is negative because the force is in the 
opposite direction of the displacement as it is being lifted upwards) 
 

Wg = -dmg(h2 - h1) 
 
And again because m is equal to density into the volume of the fluid we get: 
 

Wg = -ρdV g(h2 – h1) 
 
We must also find the work done by Wp which is the work done by a force at the input end 
of the tube which is what drives the fluid through the tube. This is given by the following 
equation using dx to be the change in horizontal displacement. The product of the 
pressure and the cross-sectional area into the change in horizontal displacement gives us 
the work done. 
 

                  F dx = (pA)(dx) = p(dV)  
So the work done is: 

Wp = p1dV - p2dV = -ρdV g(p2 – p1) 
 
Using the work kinetic energy theorem (W = dK) we can say that W = Wp + Wg = dK 
and substituting the equations we found earlier into this theorem will give us: 
 

-ρdV g(h2 – h1) - ρdV g(p2 – p1) = ½ ρdV(v22 – v12) 
 
We can finally rearrange this to get Bernoulli’s Equation!  
 


